R.Manchanda's

Mathematics for IIT-JEE

MATHEMATICS Classes

JEE/BITSAT LEVEL TEST Booklet Code A/B/C/D Test Code : 2003 <u>Matrices & Determinants</u> <u>Answer Key/Hints</u>

Q.1 If
$$A = \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix}$$
, then A' A is equal to
(a.) I (b.) -iA
(c.) -I (d.) iA
Sol. We have $A'A = \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix} \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -I$

Q.2 Let $E(\alpha) = \begin{bmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^2 \alpha \end{bmatrix}$. If α and β differs by an odd multiple of $\pi/2$, then $E(\alpha) E(\beta)$ is a

(a.) null matrix (b.) unit matrix (c.) Diagonal (d.) Orthogonal Matrix

Sol. We have $E(\alpha)E(\beta)$

 $= \begin{bmatrix} \cos^{2} \alpha & \cos \alpha \sin \alpha \\ \cos \alpha \sin \alpha & \sin^{2} \alpha \end{bmatrix} \begin{bmatrix} \cos^{2} \beta & \cos \beta \sin \beta \\ \cos \beta \sin \beta & \sin^{2} \beta \end{bmatrix} = \begin{bmatrix} \cos \alpha \cos \beta \cos(\alpha - \beta) & \cos \alpha \sin \beta \cos(\alpha - \beta) \\ \sin \alpha \cos \beta \cos(\alpha - \beta) & \sin \alpha \sin \beta \cos(\alpha - \beta) \end{bmatrix}$ As α and β differ by an odd multiple of $\pi/2$, $\alpha - \beta = (2n + 1)\pi/2$ for some integer n. Thus, $\cos [(2n + 1)\pi/2] = 0$. $E(\alpha)E(\beta) = \mathbf{0}$

Q.3 If
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$
, then the value of $\frac{x^2 + y^2}{xy}$ is equal to:
(a.) $\frac{5}{2}$ (b.) $-\frac{3}{2}$ (c.) $\frac{13}{6}$ (d.) $-\frac{13}{6}$
Sol. $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix} \Rightarrow \begin{bmatrix} x + 2y \\ 2x + y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix} \Rightarrow x + 2y = 5, \ 2x + y = 4 \Rightarrow x = 1, y = 2 \Rightarrow \frac{x^2 + y^2}{xy} = \frac{1 + 4}{2 \cdot 1} = \frac{5}{2}$

Q.4 If for the matrices A and B, AB = A and BA = B, then A^2 is equal to

(a.) I (b.) A (c.) B (d.) none of these Sol. AB = A, $BA = BA^2 = AA = (AB)A = A (BA) = AB = A$

Q.5
The value of x for which the matrix
$$\begin{bmatrix} 2/x & -1 & 2 \\ x & x & 2x^{2} \\ 1 & 1/x & 2 \end{bmatrix}$$
 is singular is
(a.) ±1 (b.) ±2 (c.) ±3 (d.) None of these
Sol. . As|A|= $\begin{pmatrix} 2 \\ x \end{pmatrix} \begin{vmatrix} x & 2x^{2} \\ 1 & 1/x & 2 \end{vmatrix} + \begin{pmatrix} 1 & 2x^{2} \\ 1 & 2 \end{vmatrix} + 2 \begin{vmatrix} 1 & x \\ 1 & -x \end{vmatrix} = \frac{2}{x} (0) + 2 - 2x^{2} + 2 \begin{pmatrix} 1 \\ x - x \end{pmatrix}$
 $= \frac{2x(1-x^{2}) + 2(1-x^{2})}{x} = \frac{2(1+x)^{2}(1-x)}{x}$ Now, $|A|=0 \Rightarrow x=\pm 1$.
Q.6 If $A \begin{bmatrix} -1 & 2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -4 & 1 \\ 7 & 7 \end{bmatrix}$, then A is equal to:
(a.) $\begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix}$ (b.) $\begin{bmatrix} -1 & 1 \\ 2 & 3 \end{bmatrix}$ (c.) $\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$ (d.) $\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$
Sol. Let $B = \begin{bmatrix} -1 & 2 \\ 3 & 1 \end{bmatrix} \Rightarrow adj(B) = \begin{bmatrix} -1 & -3^{1} \\ -2 & -1 \end{bmatrix}$ Also, $|B| = -1 - 6 = -7$
 $\Rightarrow B^{-1} = -\frac{1}{7} \begin{bmatrix} 1 & -2 \\ -3 & -1 \end{bmatrix}$ We have, $AB = \begin{bmatrix} -4 & 1 \\ 7 & 7 \end{bmatrix} \Rightarrow A = \begin{bmatrix} 74 & 1 \\ 7 & 7 \end{bmatrix} B^{-1} = -\frac{1}{7} \begin{bmatrix} -4 & 1 \\ 7 & 7 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -3 & -1 \end{bmatrix}$
 $-\frac{1}{7} \begin{bmatrix} (-4) \cdot 1 + 1 \cdot (-3) & (-4) \cdot (-2) + 1 \cdot (-1) \\ 0 & 0 & 1 \end{bmatrix} = -\frac{1}{7} \begin{bmatrix} -7 & 7 \\ -14 & 21 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$
Q.7 If $A(x_{1}) = \begin{bmatrix} \cos x_{1} & -\sin x_{1} & 0 \\ \sin x_{1} & \cos x_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $A(x_{2}) = \begin{bmatrix} \cos x_{2} & 0 \sin x_{2} \\ 0 & 1 & 0 \\ -\sin x_{2} & 0 \cos x_{2} \end{bmatrix}$, then $(A(x_{1}) \cdot A(x_{2}))^{-1}$
(a.) $A(x_{1}) \cdot A(x_{2})$ (b.) $A(-x_{2}) \cdot A(-x_{2})$
(c.) $-A(x_{2}) \cdot A(x_{1})$ (d.) $A(-x_{2}) \cdot A(-x_{2})$
(d.) $A(-x_{2}) \cdot A(-x_{2})$
adj $(A(x_{1})) = \begin{bmatrix} \cos x_{1} & -\sin x_{1} & 0 \\ \sin x_{1} & \cos x_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{pmatrix} \cos x_{1} & \sin x_{1} & 0 \\ -\sin x_{2} & \cos x_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow A^{-1}(x_{1}) = \frac{1}{|A(x_{1})|} adj(A(x_{1}))$
 $= \begin{bmatrix} \cos x_{1} & \sin x_{1} & 0 \\ \cos x_{1} & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = A(-x_{1})$ Now, $|A(x_{2})| = \cos^{2} x_{2} + \sin^{2} x_{2} = 1 adj(A(x_{2})) = \begin{bmatrix} \cos x_{2} & 0 & \sin x_{2} \\ 0 & 1 & 0 \\ -\sin x_{2} & 0 & \cos x_{2} \end{bmatrix}^{T}$

Mathematics for IIT-JEE

The number of distinct values of a 2×2 determinant whose entries are from the set Q.8 {-1, 0, 1} is: (a.) 3 (b.) 4 (c.) 5 (d.) 6 Sol. Possible values are -2, -1, 0, 1, 2 i.e. $\begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} = 1$, $\begin{vmatrix} 1 & -1 \\ 0 & 0 \end{vmatrix} = 0$, $\begin{vmatrix} 0 & 1 \\ 1 & -1 \end{vmatrix} = -1$ $\begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2$, $\begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix} = -2$ Let $A = \begin{bmatrix} 5 & 5\alpha & \alpha \\ 0 & \alpha & 5\alpha \\ 0 & 0 & 5 \end{bmatrix}$. If $\begin{vmatrix} A^2 \end{vmatrix} = 25$ then $|\alpha| =$ 0.9 (a.) 5² (b.) 1 (c.) 1/5 (d.) 5 **Sol.** $|A^2| = 25 \Rightarrow |A^2| = 25$ \therefore $(25\alpha)^2 = 25 \Rightarrow 25\alpha^2 = 1 \Rightarrow |\alpha| = 1/5$ **Q.10** If C is a 3 x 3 matrix satisfying the relation $C^2 + C = I$, then C^{-2} is given by (b.) 3C-1 (c.) C (d.) 2I+C (a.) 2C **Sol.** $C^2 + C = I \Rightarrow C(C + I) = I \Rightarrow C^{-1} = C + I$ Thus, $C^{-2} = (C + I)^2 = C^2 - 2C + I = I - C + 2C + I = 2I + C$ **0.11** If A, B and C are three square matrices of the same size such that B=CA C^{-1} , then $CA^3 C^{-1}$ is equal to (c.) B³ (a.) B (b.) B^2 (d.) B⁹ **Sol.** $CA^{3}C^{-1} = (CAC^{-1})(CAC^{-1})(CAC^{-1}) = B^{3}$ The Values of a for which the matrix $A = \begin{pmatrix} a & a^2 - 1 & -3 \\ a + 1 & 2 & a^2 + 4 \\ -3 & 4a & -1 \end{pmatrix}$ is symmetric Q.12 (b.) -2 (a.) -1 (c.) 3 (d.) 2 **Sol.** A' = A $\Rightarrow \begin{pmatrix} a & a+1 & -3 \\ a^2-1 & 2 & 4a \\ -3 & a^2+4 & -1 \end{pmatrix} = \begin{pmatrix} a & a^2-1 & -3 \\ a+1 & 2 & a^2+4 \\ -3 & 4a & -1 \end{pmatrix} \Rightarrow a+1 = a^2-1 \text{ and } 4a = a^2+4$ \Rightarrow a+1 = 4a - 4 - 1 \Rightarrow 6 - 3a \Rightarrow a =

- **Q.13** If the system of equations ax+y=3, x+2y=3, 3x+4y=7 is consistent, then value of a is given by
- (a.) 2(b.) 1(c.) -1(d.) 0Sol. Solving x+2y=3, 3x+4y=7, we getx=1, y=1 $\therefore a+1=3 \Rightarrow a=2.$

Q.14	If $\begin{pmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{pmatrix} \begin{pmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{pmatrix}^{-1} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, then			
	(a.) a = b = 1		(b.) $a = \cos 2\theta$, b	$=\sin 2\theta$
	(c.) $a = \sin 2\theta, b = cc$	os 20	(d.) $a = 1, b = sin$	20
Q.1	5 Let M be a 3 x 3 mat of the diagonal entrie	rix satisfying $M\begin{bmatrix} 0\\1\\2\end{bmatrix} = \begin{bmatrix} -2\\-2\end{bmatrix}$	$\begin{bmatrix} -1\\2\\3 \end{bmatrix}, M \begin{bmatrix} 1\\-1\\0 \end{bmatrix} = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, and$	$M\begin{bmatrix}1\\1\\1\end{bmatrix} = \begin{bmatrix}0\\0\\12\end{bmatrix}$ then sum
	(a.) 0	(b.) -3	(c.) 6	(d.) 9
Q.10	6 If $A = \begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix}$, then A^{-1}	³ is		
	(a.) $\frac{1}{27} \begin{bmatrix} 1 & -26 \\ 0 & -27 \end{bmatrix}$	(b.) $\frac{1}{27} \begin{bmatrix} -1 & -26 \\ 0 & -27 \end{bmatrix}$	(c.) $\frac{1}{27} \begin{bmatrix} 1 & -26 \\ 0 & 27 \end{bmatrix}$	(d.) $\frac{1}{27} \begin{bmatrix} -1 & 26 \\ 0 & -27 \end{bmatrix}$
Sol.	We have $A^{-1} = \frac{1}{3} \begin{vmatrix} 1 & -2 \\ 0 & 3 \end{vmatrix}$			
:	$\Rightarrow A^{-3} = \frac{1}{27} \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$	$\begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} = \frac{1}{27} \begin{bmatrix} 1 & -8 \\ 0 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} -2\\3 \end{bmatrix} = \frac{1}{27} \begin{bmatrix} 1 & -26\\0 & 27 \end{bmatrix}$	
Q.1 7	7 The matrix $A = \begin{pmatrix} p \\ q \end{pmatrix}$	$\begin{pmatrix} - & q \\ & p \end{pmatrix}$ is orthogonal if a	ind only if	
	(a.) $P^2 + q^2 = 1$	(b.) $P^2 = q^2$	(c.) $P^2 = q^2 + 1$	(d.) None of these
Q.18	B If $A = \begin{pmatrix} i & -i \\ -i & i \end{pmatrix}$ and $B = \begin{pmatrix} -i & -i \\ -i & i \end{pmatrix}$	$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ then A ⁸ equals		
	(a.) 128 B	(b.) 32 B	(c.) 16 B	(d.) 64 B
Sol.	$A = iB \Rightarrow A^2 = i^2B^2 = (-1)$ $\Rightarrow A^4 = (-2B)^2 = 4B^2 = 4B^2$	$\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ $(2B)=8B \qquad \Rightarrow A^8 = (8B)$	=-2B B) ² = 64B ² =64(2B)= 12	8B
Q.19	9 The values of k for w 2x + 3y - 4z = 0 has a	hich the system of equ non -trivial solution is	ations x + ky – 3z = 0, (are)	3x + ky - 2z = 0,
	(a.) $\frac{21}{10}$	(b.) $\frac{31}{10}$	(c.) -5	(d.) 4
Sol.	From (1) and (2), 2x+z	$=0 \Rightarrow 2x=-z$. From (3)	, we get 3y=5z ∴	$x=-\frac{1}{2}z,y=\frac{5}{3}z$
:	Substituting this in (1) w	e get $-\frac{1}{2}z + \frac{5k}{3}z - 3z = 0$	$\therefore \Rightarrow \left(\frac{5k}{3} - \frac{7}{2}\right)z = 0$ Now	$, \qquad z \neq 0 \Longrightarrow \ k = \frac{21}{10} .$

R.Manchanda's

-JEE

MATHEMATICS Classes	Mathematics for IIT-JEE
Q.20 If $\theta, \phi \in \mathbb{R}$, then the determinant $\Delta = \begin{vmatrix} \cos \theta \\ \sin \theta \\ \cos(\theta \\ $	$\begin{array}{c ccc} \theta & -\sin\theta & 1 \\ \theta & \cos\theta & 1 \\ +\phi & -\sin(\theta + \phi) & 0 \end{array}$ lies in the interval
(a.) $\left[-\sqrt{2}, \sqrt{2}\right]$ (b.) $\left[-1, 1\right]$	(c.) $\left[-\sqrt{2},1\right]$ (d.) $\left[-1,\sqrt{2}\right]$
Sol. Applying $R_3 \rightarrow R_3 - \cos \varphi R_1 \sin \varphi R_2$, we get	
$\Delta = \begin{vmatrix} \cos \theta & -\sin \theta & 1 \\ \sin \theta & \cos \theta & 1 \\ 0 & 0 & \sin \phi - \cos \phi \end{vmatrix} = (\sin \phi - \cos \phi)(\phi)$	$\cos^2 \theta + \sin^2 \theta$)
$=\sqrt{2}\left\{\frac{1}{\sqrt{2}}\sin\varphi = \frac{1}{\sqrt{2}}\cos\varphi\right\} = \sqrt{2}\sin(\varphi - \pi/4) \operatorname{As} - \varphi$	1 ≤ sin(φ − π / 4) ≤ 1, − $\sqrt{2}$ ≤ $\sqrt{2}$ sin(φ − π / 4) ≤ $\sqrt{2}$
Q.21 Given $2x - y + 2z = 2$, $x - 2y + z = -4$, $x + y$ given system equations has no solution, is	$\textbf{y}+\lambda \textbf{z}=\textbf{4}$, then the values of λ such that the
(a.) 3 (b.) 1 Sol. Form the first two equation, we get x Putting the value in the last equation we get $6+(-1+\lambda)z=4=(\lambda-1)z=-2$. For the sy	(c.) 0 (d.) -3 +y=6-z stem of equations to have no solution $\lambda = 1$
Q.22 If $a + b + c = 0$, then a root of the equation	$\Delta = \begin{vmatrix} a - x & c & b \\ c & b - x & a \\ b & a & c - x \end{vmatrix} = 0 \text{ is}$
(a.) 1 (b.) -1	(c.) $a^2 + b^2 + c^2$ (d.) 0
Sol. Applying $C_1 \to C_1 + C_2 + C_3$, we get $\Delta = \begin{vmatrix} a+b+c-x & c & b \\ a+b+c-x & b-x & a \\ a+b+c-x & a & c-x \end{vmatrix} = \begin{vmatrix} -x & c & b \\ -x & b-x & a \\ -x & a & c-x \end{vmatrix}$	∆ clearly equals 0 when x = 0 [∵a+b+c=0]
Q.23 The values of λ for which the system of equation $x+y-3=0$, $(1+\lambda)x+(2+\lambda)-8=0$, $x-(1+\lambda)x+(2+\lambda)-8=0$	uations λ)y + (2 + λ) = 0 has a non-trivial solutions,
(a.) -5/3, 1 (b.) 2/3,-3	(c.) -1/3,-3 (d.) 0
Sol. The given system of equations has a non $\Delta = \begin{vmatrix} 1 & 1 & -3 \\ 1+\lambda & 2+\lambda & -8 \\ 1 & -(1+\lambda) & 2+\lambda \end{vmatrix} = 0$	trivial solution if
Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 + 3C_1$, we get	$e \Delta = \begin{vmatrix} 1 & 0 & -3 \\ 1 + \lambda & 1 & -5 + 3\lambda \\ 1 & -2 - \lambda & 5 + \lambda \end{vmatrix} = 0$
$\Rightarrow \qquad (5+\lambda)+(2+\lambda)(3\lambda-5)=0 \Rightarrow \qquad 5+\lambda+6$	$\lambda - 10 + 3\lambda^2 - 5\lambda = 0 \Rightarrow \lambda = -5/3 \text{ or } \lambda = 1.$

Q.24	If the system of equations x-ky- the possible values of k are	-z=0, kx-y-z=0,x+y-z=	=0 has a non-zero solution, then
	(a.) -1, 2 (b.) 1,2	(c.) 0, 1	. (d.) -1,1
Sol. /	As the given system has a non-zero	solution, $\begin{vmatrix} 1 & -1 \\ -1 \\ -1 \end{vmatrix}$ using $C_1 \rightarrow 0$ $(+k)(-k-1) \Rightarrow 0$	$C_1 - C_2, C_2 \to C_2 + C_3$] D=(1+k)(-2+k+1) ⇒ k=-1, 1
Q.25	The number of real values of a for x+ay-z=0,2x-y+az=0,ax+y+2z=	or which the syster =0 has a non-trivial sol	n of equations lution, is
	(a.) 3 (b.) 1	(c.) 0	(d.) infinite
Q.26	If $\Delta = \begin{vmatrix} -a & 2b & 0 \\ 0 & -a & 2b \\ 2b & 0 & -a \end{vmatrix} = 0$, then		
	(a.) 1/b is a cube root of unity	(b.) a u	i is one of the cube roots of inity
	(c.) b is one of the cube roots	of 8 (d.) a	b is a cube roots of 8
Sol. S	Show $\Delta = -a^3 + 8b^3$ Thus, $\Delta = 0$	$\Rightarrow \left(\frac{a}{b}\right)^3 = 8 \Rightarrow a/b \text{ is a}$	a cube root of 8.
Q.27		1 ab $-$	+ 1
	If a, b, c are non-zero real numb	pers, the $\Delta = \begin{vmatrix} 1 & bc & \frac{1}{b} \\ 1 & ca & \frac{1}{c} \end{vmatrix}$	$ \begin{array}{c} b \\ + \frac{1}{c} \\ + \frac{1}{a} \end{array} $ equals
	(a.) 0	(b.) b	oc+ca+ab
	(c.) $a^{-1} + b^{-1} + c^{-1}$	(d.) a	lbc-1
Sol.	Write $R_1 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - $	$-R_{1} \Delta = abc \begin{vmatrix} 1 & \frac{1}{c} & \frac{1}{a} \\ 1 & \frac{1}{a} & \frac{1}{b} \\ 1 & \frac{1}{b} & \frac{1}{c} \end{vmatrix}$	$\left. \begin{array}{c} + \frac{1}{b} \\ + \frac{1}{c} \\ + \frac{1}{a} \end{array} \right \text{and use } C_2 \rightarrow C_2 + C_1 \text{, to show}$
th	at $\Delta = 0$		
Q.28	If $\Delta = \begin{vmatrix} 1 + Y & 1 - Y & 1 - Y \\ 1 - Y & 1 + Y & 1 - Y \\ 1 - Y & 1 - Y & 1 + Y \end{vmatrix} = 0, then$	n values of y are	
	(a.) 0,3 (b.) 2,1	(c.) -1,3	3 (d.) 0,2
Sol. ા	Using $C_1 \rightarrow C_1 + C_2 + C_3$, we get		

Mathematics for IIT-JEE

$$\Delta = (3 - y) \begin{vmatrix} 1 & 1 - y & 1 - y \\ 1 & 1 + y & 1 - y \\ 1 & 1 - y & 1 + y \end{vmatrix} \text{Applying } R_3 \to R_3 - R_2, \ R_2 \to R_2 - R_1, \text{ we get}$$
$$\Delta = (3 - y) \begin{vmatrix} 1 & 1 - y & 1 - y \\ 0 & 2y & 0 \\ 0 & -2y & 2y \end{vmatrix} = (3 - y)(4y^2) \quad \therefore \quad \Delta = 0 \Rightarrow y = 0 \text{ or } y = 3.$$

Q.29 If A is symmetric matrix and B is a skew symmetric matrix, then for any $n \in N$, which of the following is not correct?

- (a.) Aⁿ is symmetric (b.) Aⁿ is symmetric, if n is odd.
- (c.) B^n is skew symmetric, if n is odd (d.) B^n is symmetric, if n is even.

Sol. If A is symmetric, then every integral power of A is symmetric.

If B is skew symmetric then every odd integral powers of B are skew symmetric and every even integral powers of B are symmetric.

$$\begin{array}{l} \mathbf{Q.30} \\ \text{If } A = \begin{pmatrix} \frac{-1+i\sqrt{3}}{2i} & \frac{-1-i\sqrt{3}}{2i} \\ \frac{1+i\sqrt{3}}{2i} & \frac{1-i\sqrt{3}}{2i} \\ \frac{1+i\sqrt{3}}{2i} & \frac{1-i\sqrt{3}}{2i} \\ \end{pmatrix}, \ i = \sqrt{-1} \text{ and } f(\mathbf{x}) = \mathbf{x}^2 + 2, \text{ then f}(\mathbf{A}) \text{ is equal to:} \\ (a.) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & (b.) \begin{bmatrix} \frac{3-i\sqrt{3}}{2} \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ (c.) \begin{bmatrix} \frac{5-i\sqrt{3}}{2} \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} & (d.) \begin{bmatrix} 2+i\sqrt{3} \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \\ \end{array}$$

$$\begin{array}{l} \text{Sol. } \because \omega = \frac{-1+i\sqrt{3}}{2} \text{ and } \omega^2 = \frac{-1-i\sqrt{3}}{2} \\ \text{Also, } \omega^3 = 1 \text{ and } \omega + \omega^2 = -1 \\ \text{Then, } A = \begin{bmatrix} \frac{\omega}{i} & \frac{\omega^2}{i} \\ -\frac{\omega^2}{i} & -\frac{\omega}{i} \end{bmatrix} = \frac{\omega}{i} \begin{bmatrix} 1 & \omega \\ -\omega & -1 \end{bmatrix} \therefore \quad A^2 = \frac{\omega^2}{i^2} \begin{bmatrix} 1 & \omega \\ -\omega & -1 \end{bmatrix} \begin{bmatrix} 1 & \omega \\ 0 & 1-\omega^2 \end{bmatrix} \\ = \begin{bmatrix} -\omega^2 + \omega^4 & 0 \\ 0 & \omega^2 + \omega^4 \end{bmatrix} = \begin{bmatrix} -\omega^2 + \omega^2 & 0 \\ 0 & -\omega^2 + \omega \end{bmatrix} \\ \therefore f(x) = x^2 + 2 \quad \therefore f(A) = A^2 + 2I = \begin{bmatrix} -\omega^2 + \omega^2 & 0 \\ 0 & -\omega^2 + \omega \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} -\omega^2 + \omega + 2 & 0 \\ 0 & -\omega^2 + \omega + 2 \end{bmatrix} \\ = \left(-\omega^2 + \omega + 2 \right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = (3 + 2\omega) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \left(3 + 2 \left(\frac{-1+i\sqrt{3}}{2} \right) \right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \left(2+i\sqrt{3} \right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{array}$$

0.21	If α , β , γ are the roots of $x^3 + px^2 + q = 0$, when	re q \neq 0, and $\Delta = \begin{vmatrix} 1/\alpha & 1/\beta & 1/\gamma \\ 1/\beta & 1/\gamma & 1/\alpha \\ 1/\gamma & 1/\alpha & 1/\beta \end{vmatrix}$
Q.31	then Δ equals	
Sol.	(a.) $-p/q$ (b.) $1/q$ (We have $\beta\gamma + \gamma\alpha + \alpha\beta = 0$. We can write Λ as	(c.) p ² q (d.) 0
Δ	$\Delta = \frac{1}{\alpha^{3}\beta^{3}\gamma^{3}} \begin{vmatrix} \beta\gamma & \gamma\alpha & \alpha\beta \\ \gamma\alpha & \alpha\beta & \beta\gamma \\ \alpha\beta & \beta\gamma & \gamma\alpha \end{vmatrix} = \frac{1}{\alpha^{3}\beta^{3}\gamma^{3}} \begin{vmatrix} \beta\gamma + \gamma\alpha + \alpha\beta & \gamma\alpha \\ \gamma\alpha + \alpha\beta + \beta\gamma & \alpha\beta \\ \alpha\beta + \beta\gamma + \gamma\alpha & \beta\gamma \end{vmatrix}$	$\begin{vmatrix} \alpha \beta \\ \beta \gamma \\ \gamma \alpha \end{vmatrix} \text{ [using } [C_1 \rightarrow C_1 + C_2 + C_3]$
Q.32	$= \frac{1}{\alpha^{3}\beta^{3}\gamma^{3}} \begin{vmatrix} 0 & \gamma\alpha & \alpha\beta \\ 0 & \alpha\beta & \beta\gamma \\ 0 & \beta\gamma & \gamma\alpha \end{vmatrix} = 0 \text{ [all zero property} \\ \begin{vmatrix} b + c & a - b & a \end{vmatrix} = 0 \text{ [all zero property} \end{vmatrix}$	
-	If $\Delta_1 = \begin{vmatrix} c+a & b-c & b \\ a+b & c-a & c \end{vmatrix}$ and $\Delta_2 = \begin{vmatrix} b & c & a \\ c & a & b \end{vmatrix}$,	then $\Delta_1 - \Delta_2$ equal
Sol	(a.) 0 (b.) $3abc$ ((c.) 6abc (d.) $2(a^3 + b^3 + c^3)$
501.	$\Delta_1 = \begin{vmatrix} a+b+c & -b & a \\ a+b+c & -c & b \\ a+b+c & -a & c \end{vmatrix}$ Using $C_1 \rightarrow C_2$	$C_1 + C_2 - C_3$, we get
	$\Delta_1 = \begin{vmatrix} \mathbf{c} & -\mathbf{b} & \mathbf{a} \\ \mathbf{a} & -\mathbf{c} & \mathbf{b} \\ \mathbf{b} & -\mathbf{a} & \mathbf{c} \end{vmatrix} = \begin{vmatrix} \mathbf{a} & -\mathbf{b} & \mathbf{c} \\ \mathbf{b} & -\mathbf{c} & \mathbf{a} \\ \mathbf{c} & -\mathbf{a} & \mathbf{b} \end{vmatrix} = \begin{vmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{b} & \mathbf{c} & \mathbf{a} \\ \mathbf{c} & \mathbf{c} & \mathbf{a} \end{vmatrix}$	$\Rightarrow \Delta_1 = \Delta_2 \Rightarrow \Delta_1 - \Delta_2 = 0 .$
Q.33	If α, β, γ are real numbers, then the determination	ant $\Delta = \begin{vmatrix} \sin^2 \alpha & \cos 2\alpha & \cos^2 \alpha \\ \sin^2 \beta & \cos 2\beta & \cos^2 \beta \\ \sin^2 \gamma & \cos 2\gamma & \cos^2 \gamma \end{vmatrix}$ equals
	(a.) 0	(b.) ⁻¹
Sol	(c.) $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$	(d.) None of these
501.	If $y \in \mathbb{R}$, the determinant	
Q.34	$\Delta = \begin{vmatrix} 1 & \cos x & 0 \\ -1 & 1 - \cos x & \sin x + \cos x \\ 0 & -1 & 1 - \sqrt{2} \sin(x + \pi/4) \end{vmatrix}$	equals
Sol.	(a.) 0 (b.) -1 (Using $R_2 \rightarrow R_2 + R_1$, we get	(c.) 1 (d.) None of these
Δ	$\Delta = \begin{vmatrix} 1 & \cos x & 0 \\ 0 & 1 & \sin + \cos x \\ 0 & -1 & 1 - (\sin x + \cos x) \end{vmatrix}$ Using $R_3 \to R_3 + R_3 = 0$	$+R_2$, we get $\Delta = \begin{vmatrix} 1 & \cos x & 0 \\ 0 & 1 & \sin + \cos x \\ 0 & 0 & 1 \end{vmatrix} = 1$

Mathematics for IIT-JEE

If $\theta \in R$, maximum value of $\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta \end{vmatrix}$ is Q.35 (a.) 1/2 (b.) $\sqrt{3}/2$ (c.) $\sqrt{2}$ (d.) $3\sqrt{2}/4$ **Sol.** Use $R_2 \rightarrow R_2 - R_1$, $R_3 \rightarrow R_3 - R_1$ to obtain $\Delta = \sin\theta\cos\theta = \frac{1}{2}\sin(2\theta)$ If $\Delta = \begin{vmatrix} 1 & x & x^2 \\ x & x^2 & 1 \\ x^2 & 1 & x \end{vmatrix} = -7$ and $\Delta_1 = \begin{vmatrix} x^3 - 1 & 0 & x - x^4 \\ 0 & x - x^4 & x^3 - 1 \\ x - x^4 & x^3 - 1 & 0 \end{vmatrix}$, then Q.36 (d.) ∆ = 49 (b.) $\Delta = 343$ (a.) $\Delta = 7$ Sol. Note that $\Delta_{1} = \begin{vmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{vmatrix}$ where Cij cofactor of (i, j)th element of $\begin{vmatrix} 1 & x & x^{2} \\ x & x^{2} & 1 \\ x^{2} & 1 & x \end{vmatrix}$ $\therefore \quad \Delta_{1} = \Delta^{2} = 49$ **Q.37** Suppose A is square matrix such that $A^3 = I$, then $(A + I)^3 + (A - I)^3 - 6A$ equals (c.) A (a.) I (b.) 2 I (d.) 3 A $If \Delta = \begin{vmatrix} 1 & 1 & 1 \\ {}^{m}C_{1} & {}^{m+3}C_{1} & {}^{m+6}C_{1} \\ {}^{m}C_{2} & {}^{m+3}C_{2} & {}^{m+6}C_{2} \end{vmatrix} = 2^{\alpha} 3^{\beta} 5^{\gamma}, \text{ then } \alpha + \beta + \gamma \text{ is equal}$ (a.) 3 (b.) 5 (c.) 7 We have $\Delta = \begin{vmatrix} 1 & 1 & 1 \\ m & m+3 & m+6 \\ \frac{1}{2}m(m-1) & \frac{1}{2}(m+3)(m+2) & \frac{1}{2}(m+6)(m+5) \end{vmatrix}$ Q.38 (d.) None of these Sol.

 $\begin{vmatrix} \frac{1}{2}m(m-1) & \frac{1}{2}(m+3)(m+2) & \frac{1}{2}(m+6)(m+5) \end{vmatrix}$ Applying $C_3 \to C_3 - C_2, C_2 \to C_2 - C_1$, we get $\Delta = \begin{vmatrix} 1 & 0 & 0 \\ m & 3 & 3 \\ \frac{1}{2}m(m-1) & 3(m+1) & 3(m+4) \end{vmatrix} = 3^2(m+4-m-1) = 3^3 \quad \therefore \quad \alpha + \beta + \gamma = 3$

9

Q.39	2.39 The determinant $\begin{vmatrix} a & a+d & a+2d \\ a^2 & (a+d)^2 & (a+2d)^2 \\ 2a+3d & 2(a+d) & 2a+d \end{vmatrix} = 0.$ then :				
	(a.) d = 0	(b.) a + d = 0	(c.)	d = 0 or $a + d = 0$	(d.) none of these
Sol Use $C_3 \rightarrow C_3 - C_2$, $C_2 \rightarrow C_2 - C_1$.					
Q.40	If there are two values of 'a' for which $\Delta = \begin{vmatrix} 1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2a \end{vmatrix}$ is 86, then the sum of these values				
	(a.) 4	(b.) 5	(c.)	-4	(d.) -5

